STARTOS

Userdé Manual

e

Jan 17, 2013

Anatoly Besplemennov

Introduction

The system may be ported and adapted on any ARM platform. To begin| et & s
the ARM9 developing board is used.

The Friendly ARM device fmini24400attracts attention by i tégbssibilities and low cost.
Mini2440 is useful for developing industrial automation systems.

Many specialists try to carry the properties of mainframe computers to the Friendly ARM.
But there is also another approach, from simple to complex i.e. from rapidly developing MCUs.

Computer market offers desktop computers, notebooks, Net books, tablets. At the
present time in industrial automation field the mini2440 board has fewer number of competitors,
taking in consideration the set of external devices mounted aboard, jacks for their connection
and wide range of LCD screens.

Many users successfully working with traditional computers and microcontrollers meet
difficulties developing and applying ARM systems.

All that impelled the author to create not complex system for industrial automation,
laboratory purposes and as an instrumental aid for scientific experiments. STARTOS was
created by engineer and for engineers.

A system aimed to contain functions, which we like to use: simplicity, reliability,
launching programs from external drives, providing the user with the system functions through
the mechanism of program interrupts. The system does not limit the user possibilities but gives
him the services. It executes all duty work allowing the user to think about his main task.

It was built to be clear, easy to use, quick for learning and applying by engineers,
students and specialists in other non-programming fields.

cons

Quick start

In order to prompt verifying system abilities, not in details, i t 6 S n etc dostlsear y

following:

- Please load S_X35.BIN (or other matching to your hardware) into SDRAM or in NAND
Flash by using standard methods (commands [d] or [a]). Launch the DNW program, connect
COMand USBcablest o t he Board, select vy @aursetBad@addresSOM F
0x33D00000 (0x30000000 also will be good).

First time System will ask to calibrate the touch-sensitive screen.

On your Desktop/Notebook computer:

- Perform quick format SD card up to 2 GB for FAT32,
- Write some files from folder BIN into the Card’s root and insert it in Friendly ARM.

In case you have loaded STARTOS by [a] command, move the switch S2 in NAND
position. Turn the power on. During 1 second the window witht he pr ogr amds gr ap

will appear.

Press [>] in the left lower corner of the screen. List of files from SD card will appear.

Next, click on the file name with the stylus, for example, tap Hello1.BIN. It must begin to

work.

System properties

The system is written using C and Assembler languages. Actually it is the kernel with the
User interface and minimal set of necessary functions. That is why it had no beautiful
appearance with clock and calendar. (This may be done by making file Start.bin - it will be

playing the Shell's role. Forindustrialpur poses i tpPs not needed
Start time after power on: lessthan1s
Size of program: less than 40 KBytes
SDRAM loading address: 0x33D00000.

System occupies a small volume in the upper SDRAM area providing the useré standard
programs loading from address 0x30000000 (very beginning of the RAM) and memory volume
of 0x33D00000-0x30000000= 63963136 Bytes (almost all 64 MB).

Autorun the User6 programs after power on present

If the file named START.BIN is present on the SD card, it will be launched automatically.

The user is granted to have full control over hardware resources.
System functions

- Initialization the SoC (system on chip) Samsung S3C2440A components and other external
devices;

- User programs loading and interworking with system functions;

- Working with the LCD in text and graphic modes (output Text, Pixels, Lines, Boxes, BMP
pictures, Saving / Restoring Screen areas);

- Reading pen X, Y coordinates of the touch screen;

- Working with the RTC (real time clock);

- Reading data from analog to digital converters (ADC);

- Reading / Writing Data to / from digital ports;

- Reading / Writing Bytes and Strings of the COM Port;

- Working with pulse-width modulators (PWM) and Piezo buzzer, Sound output 8 bits per
sample 16KHz sample rate is supported as well;

- Networking (Receive/Transmit Ethernet packets, TCP IP Web Client/Server);

- Reading/writing files from/to the SD card.

Screen calibration data are stored in EEPROM.

Work with SD cards is very useful for embedded systems for changing and upgrading
programs. It also preserves the NAND Flash memory with limited write cycles and soldered into
the system board.

System was tested and verified on standard (not SDHC) cards up to 2 GB with the file
system FAT32. Use better the Micro SD, you will save SD slot on Friendly ARM board in case of
intensive work. Cardd data transfer speed determines the loading time. If card will be too slow,
the timeout will be occurring and the system will produce error message: No/Slow SD.

The system is using the Interrupts Driven model. The user must avoid implementing
systembs software interrupts iThe ISRmnustbe shgttandSe r v
work with Hardware resources only and set Flags for Main Program. However, it can be
changed. Doing this, the System must understand from which Processor Mode it came into the
Interrupt and set the Processor Mode in proper status. It may be done automatically.

Also, the system can be forced to execute Data arrays as instructions. It is useful for
experimenting with Evolutionary Algorithms (Genetic Algorithms in particular), for creating the

self-modified Program Code.

Limitations

Author d i d n 6 tto spehdamuch time developing additional functions, possibly not

popular among users and increasing the systemé sode. That is why:

- Screen keyboard is not present on the system level. User can make his own keyboard as
considered in the Project fKeyboin Sketches supplied.

- There are two system fonts. Both of them have matrix size 8x8 pixels. One font is hormal,
other - bold. It is possible to create any other font. Project Hello2 gives an example how to
create and print with the User font as graphics. The Hello3 sketch shows how to build and
modi fy the User 6s f. dhe Fat32(PBject shows hoiv toscreatecand) apply
the font 32x32 pixels in size from the Times New Roman Windows font. In the Web Client

Project the font 4x6 pixels is used for printing the Web Page in HTML form.

Programmerd snterface

Function description
The system is on developing with adding new functions.
Exit (void);
Exit the user's program.

Delay (int ms); Delay_uS(int uS);

Delays execution of the program. Parameters : number of milliseconds or uSeconds

Screen operations

Fill_Screen (int color);

Fill screen by the color. Parameter: color (depth 16 bits per pixel)

Text
Set_Font (char Bold, int Fore_Col, int Back_Col);

Changes the current font. Parameters: 1st: 1-bold, 0- normal; 2nd: color of symbols, 3rd:

color of the background, (if equal 1, background will be transparent).

Print_String (int x0, int y0, char *txt);

Outputs the String of text to the LCD. Parameters: 1st and 2nd - abscissa and ordinate

of the line beginning position in pixels, 3rd: pointer to text buffer or the line itself in quotation-

marks.

Examples:

chartxt [5] ={"Hello" }; [l or char *txt=0Hell 00
Print_String (30, 50, txt);

Print_String (30, 70, "Hello, World!");

The text is printed by previously defined font.

Printf (int x, int 'y, char *fmt,...);

Prints out the line of formatted text
Examples:
z=0xCDEF12;

Printf (80, 170, "Z=0x%x", 2);

Graphics

Set_Color (int Color);

Establishes a current color for functions Put_Pixel, Line and painted rectangle (Box).

Put_Bmp (int x0, int y0, char *omp);

Put out bitmap image on the LCD with the coordinates of the left upper corner x0 and yO0.
3rd parameter points onto the image buffer with type fthara First 4 bytes in the buffer must
represent: first pair - width of the image, second pair - height.

Example:
charrun[] = /[w=0032, h=0006

{32,0, 6,0, Oxff, OxfO, Oxff, OxfO, Oxff, OxfO, 0x00, 0x00, 0x54, 0x14, Oxff, 0xf0,0x00,
0x00, 0x54, 0x14, Oxff, Oxf0, 0x00, 0x00, Oxfé é . . }

Put_ Bmp (198, 139, run);

Draws image with = 32 and height = 6 pixels in the screen area with the coordinates of
upper left corner x=198, y=139. Pixels of images are described in user char array run [].

Put_Pixel (int x, int y, int color);

Puts one dot pixel on the LCD with coordinates fkdand fiydand color fcolora

Get_Pixel (int x, int y);

The function returns color value of the screen point with coordinates x and y in user
variable, for example:

int pix_color;

pix_color = Get_Pixel (60, 80);

Put_Line (int x0, int y0, int x1, int y1);

Draws the line on the LCD which begins at x0 and y0 and ends at x1 and y1 coordinates.
Color is determined by last operator Set_Color.

Save Box (int x0, int y0, int w, int h);

Stores rectangular area of the screen with coordinates of left upper corner x0 and yoO,
width w and height h in systemd 8ner buffer.

Restore_Box (int x0, int y0);

Restores the rectangular area onto the screen with the coordinates of the left upper
corner X0 and y0, with width w and height h which was storedint he syst emfés i nner

Box (int x0, inty0, int x1, intyl);
Draws rectangle on screen with coordinates x0, y0, x1, yl. The color of rectangle

monotonously subsides from value given by last operator Set_Color from top to bottom. May be
useful for drawing buttons, bars, etc.

LCD Control

LCD_LEDs (char invpwren, char pwren);

Turn On or Off the screen backlight LEDs and the Video output. Use in various
combinations.

The first parameter controls the inverting of LCD_Video signal for auto turning On
backlight in case of Video appearance.

Second operator Turns On / Off backlight LEDs.
Examples:
LCD_LEDs (0,1); -LEDsOn -the Screen is visible

LCD _LEDs (0,0); -LEDsOff -the Screenis invisible

LCD_Video (char on_off);
Turns On / Off video signal
Example.

LCD Video (1); - video turned On

Touch Screen

int Get_TSBuffer ();

Returns the address of system touch screen buffer in user variable. It is the quickest
method of getting x and y. The buffer contains: [0] I Flag of the pen was tapped, [1] T X T cord.
[2] T Y-cord.

Example:

int Z, XY,

int *Pen_Buffer_Address;

z = Get_TSBuffer(); 1 Receive the buffer address in z

Pen_Buffer_Address = (int *) z; 1 Set pointertot he buf ferés addre

Next we can verify the state of touch screen and get coordinates of the screen point
where the pen was tapped.

if (Pen_Buffer_Address[0]) /I was pressed ?
{ Pen_Buffer_Address [0] = 0; /I clear the flag of pressing
x = Pen_Buffer_Address [1];

y = Pen_Buffer_Address [2]; /l read coordinates x and y

int Read_TS(&(X),&(Y));

Read_TS () will fill X,Y with their values. Also it returns the Flag showing if the screen is
pressed or not.

Example:
int pen_down;
int X,Y;

pen_down=Read_TS(&(X),&(y));

if (pen_down)

{ if (((y>30)&&(y<60)) && ((x>30)&&(x<60))){ Exit(); } // exit

else

{ Printf(50, 200, "X = %03d", x); Printf(50, 210, "Y = %03d", y); }
}

Real Time Clock (RTC)

Get_RTC (char *txt);

The function fills the txt char array by date and time in format: dd.mm.yy hh:mm.ss Then
the user program can change the order of digits if needed and use its @alues.

Timer
Get_ms ();

Returns number of milliseconds have passed since the last system start. The Timer4 is
initialized and used as the system timer. Also it may be used for switching between tasks.

Example.

ms=Get_ms();

SD card
int Read_SD (char *RAM_address, U32 SD_address, U16 block);
int Write_SD (char *RAM_address, U32 SD_address, U16 block);

Direct reads/writes areas on the SD card.
Input: pointer to the buffer or physical address in RAM, SD card address, number of
blocks. One block equal 512 Bytes. Useful for custom file systems or fast transfer.

Files

int Open_File (char *fname);
Opens the file with specified file name. Returns the length or O if file not exists.

F_Len = Open_File(snd_tst);

int

char

char

char

char

char

int Read_File(char *f_buf, int len);

Reads len number of Bytes from the open file into the buffer or address.

Example.
F_Len;
SND_Buffer [100000]; /I Snd File_Buffer
PIC_Buffer [260000]; /I Pic File_Buffer

snd_tst[11] ~ ={S''0"'U'N','D,'T"'S"'T"'D''A",' T’}

F _Len = Open_File(snd_tst);
Printf (0,50,"Sound File Len = %04d", F_Len);
Read_File (SND_Buffer, F_Len);

PSound (SND_Buffer, F_Len);

int Write_File (char *f_buf, int len);

Example.

txtl_tst[11] ={T,E,X,T," 'l 'N,"T,X,T}/l put spaces when no letters

txt2_tst[11] ={T,E,X,T, O,'U,T, T, X, T}
F_Len = Open_File(txt2_tst); 1 open file for writing
Write_File (W_Buff, F_Len); 1 write the data

Notes:

1. File for writing must be previously created on your PC and have sufficient size

2. The buffer for file® data must be big enough to accept the data. It must be aligned by
the cluster size. For instance, you plan to write the BMP file for 240x320 and 24 bpp. It has size
230454 Bytes including the Head. So, the buffer will be at least 245760 Bytes. The number
245760 = 15 clusters x 16384 Bytes in one cluster. 16384 is the max cluster size for FAT32.
You may choose from 512 to 16384 while formatting the card. More the cluster size, more the
speed.

Simple method: just look att h e f i bneydusPCsamdzadd some value.

Analoqg To Digital Donverter (ADC)

Get_ADC (char ADC_chan);

Returns measured voltage applied to the input pins of ADC (channels 0 Ei®to user
variable.

Example:

int ADC_data;
ADC_data = Get_ADC(0);
Set_Font (1, Yellow, 20);

Printf (50, 70, "ADC Channel 0 = %03d", ADC_data);

Pulse width modulator (PWM) and Piezo Buzzer

PWM out0 (U8 val); I this is the PIN31 at CON4
PWM_outl (U8 val); 1l this is the PIN32 at CON4

Qut puts the pulse width modul ated signal
limits. Useful for analog output and the servo motor control.

Buzz (int freq, int ms);

Connects the on board Piezo buzzer to the first PWM channel output and the Buzzer
produces sound with frequency freq and duration ms.

Buzzer_Freq (int freq);

Defines the frequency produced by PWM in Hertz.
Buzzer_Out (char on_off);

Connects (if parameter=1) or disconnects (if parameter=0) PWM Out from Piezo Buzzer.
So it will produce sound or keep silence.

Sounds using PWM, Pezospeaker or Amplifier with Loudspeaker

void PSound (U8 *buf, int len);

Plays Sound Data from buffer buf with length len.

The function uses the PWM TimerO in Interrupts Mode. Immediately returns control to
the User program while keeping the sound playing.

Example:
PSound (soundl, 5946);
PSound (soundl+offset, 5946-offset); // Plays not from the beginning

Sound Data is prepared by Utility supplied. It must be 8-bits per sample, 16 kHz sample
rate.

An example you can see at: http://youtu.be/Qdtj17tCpfM

Output Device is connected to GND (Pin 3) and GPBO (Timer0 PWM, Pin 31) of CON4.
Otherwise you will hear sounds, produced by on board Piezospeaker.

Doappend sequence ¢€é128, 100, 80, Gabay®d®, 2V o iaii & &
needed.

http://youtu.be/Qdtj17tCpfM

Universal asynchronous receiver-transmitter
(UART, COM Port)

Uart_lInit (char chan, int BaudRate);

Initializes UART and assigns Data exchange speed.

Example: Uart_Init (0, 115200); - sets channel 0 and speed 115 KBod

Uart_Select (char chan);

Select one of three UART channels

Uart_Printf (char *fmt, ...);

Sends a line of formatted text into a COM port.

Uart_TxEmpty (char chan);

Flushes the UART shift register data in the channel pointed. (Clears it and prepare to
work).

char Uart_GetChar (char chan);

Gets UART data byte, stores it in User variable with waiting for the data's appearance.

char Uart_GetKey (char chan);
Gets UART data byte, moves it in User variable without waiting of data get ready.

If the data in register exist, they will be read, if no, program continues its execution.

Uart_GetString (char *string);

Inputs line of symbols from the port until buffer of the line will ends or will be accepted
symbol \r (<If>+<cr>, key [Enter]).

Uart_SendByte (char data);

Sends a byte of data into a COM port.

Uart_SendString (char *pt);

Sends a line of symbols into COM port. Parameter T pointer to line or line by itself closed
in quotation-marks.

Miscellaneous functions

Dec2Asc (int num, char *txt);

Translates decimal number num into char type and places it in txt array.

Hex2Asc (int num, char *txt);

Translates hexadecimal number num into char type and writes it into the txt array.

Network functions

Network interface controller initialization

char NIC_init (char *MAC_addr);

res = NIC_Init (macaddr);
Initialize the NIC with the MAC address.

Returns error codes or the connection parameters (the speed, half/full duplex).

Packet receive

int NIC_rx (U16 *RX_buffer);

rx_len = NIC_rx(RX_data));

Reads the Ethernet packet into the buffer, returns the length of the packet or zero.

Transmit packet

void NIC_tx (U16 *TX_buffer, U16 Nbytes);
NIC tx (TX data, 70);

Send the packet from buffer with length in Bytes.

The Web Server

Server (80, mini2440 ip, pagel, strbuf);
Input: the Port number, the source IP address, the buffer with Page.

Returns the String (up to 10 Bytes) which contains arguments got from the Browser to
perform analyze and processing.

The Client

res = Client (mini2440 _ip, server_ip, request, buf);

Input: the source, destination IP addresses, request to Server.

Output: the pointer to buffer containing the Page received from the Server and
res=number of Bytes received.

More detailed Networking description see in Appendix 2.

Program examples

Projects were prepared in Metrowerks CodeWarrior for ARM Developer Suite v1.2. It is
assumed, that environment is installed on your computer. Also some projects were ported in
Keil uVision4 IDE and IAR.

There are enough only three files for a project:

- start.s - system Initialization;
- StartOS.c - description and system functions;

- Main.c - your program itself

. Metrowerks CodeWarrior for ARM Developer Suite v1.2
File Edit View Search Project Debug Window Help

L B AN EEE KL BY BER-

Ilﬂ DebugRel_bin jl@ L+ 4 @ -
Files Link Order | Targetsl

¢ Fie |
B inits
B Main.c
B Stat0S.c

3 files

Size of executing binary module also depends f r o m o Qriei EbFh secifion per
functiona If it is checked, program size, for example, Hellol.bin decreases from 776 to 180
bytes. More complex programs in this case may not work, then simply cancel (uncheck) the
option.

.
P Metrowerks CodeWarrior for ARM Developer Suite v1.2 E=REEE ™
File Edit VYiew Search Project Debug Window Help

REsHo v < ha A AN mERW @ ER

H Target Settings Panels R ARM C Cormpiler
=+ Target
- Target Settings | ATPCS I Wamingsl Emors I Debug/ Optl Preprocessor Code Gen |Ext|—c|s I LI_"
o Aocess Paths Code Generation Options
- Build Extraz [~ Enum container abways int
- Runtime Settings [~ Plain char is signed
- File Mappings
- Source Treesz
- ARk Target
- Language Settings ¥ One ELF section per function
- ARM Azzembler
- AR C Compiler
- ARM C++ Compiler
- Thumb C Compiler =
- Thumb C++ Compiler Equivalent Command Line

[=- :Linker 02 -zo W -gtp cpu ARMS20T
= ARM Linker

o ARM fromELF
(= Editor j

[~ Split load and store multiple
[Namow double constants to float constants

Factory Settings Rewert Import Panel... | Export Panel... |

Cancel | Apply |

You can also use standard init files from ADS, Keil or IAR.

For work with examples is necessary to do:

- Find and launch the file of project with .mcp extension, for example, Hellol.mfn tc

B Metrowerks CodeWarricr for ARM Developer Suite v1.2 =RNCN| X

File Edit VYiew Search Project Debug Window Help

| B=

I Main.c E=N EoR =5
a

char txt [S5]={"Hellao"};

void Main(woid)

i int iy
for (1 =136; 1 » &8; —-1)
{
ffK ¥ String
Print String (i, 150, "Helloc, Weorld!™):

Print_String { i, 170, (char *)txt);

Delay {20} ; /f Delay 20 mS
}
Exit {y: // Exit to 05
}
M B g Line 22 Call | [«] | v 4

Edit file Main.fnon your consideration, taste and style. Also you can edit the names of the
system calls in the file StartOS.fmas you wish.

For build project Press [F7].

In folder C:\sketches\HELLO1\Hello1_Data\DebugRel_bin will appear file Hello1.bin.

Write Hellol.bin in root of SD card. Insert card in Friendly ARM, turn power on.

During 1 second will appear the system screen.

Press [>] in the left lower corner of the screen.

List of files on SD then will appear.

Tap Hellol.bin by Stylus.

The program must begin to work.

Next you can experiment with other programs.

In case of any questions, please contact author.

All educational projects were verified on operability. They can be used as base for

building your programs. Simply Edit text of Main.f translate and get ready programs.
Folder Pictures contains primitives for examples STEPMOTOR and HELLO?2.
In folder BMP2C you will find programs for converting BMP files onto source text in C

language. This utility is from DVD supplied with Friendly ARM.

The GLCD FontCreator and Evafont utilities let you make your own font.
The WaveEditor, AudioConverter, Converter WAV to C source are used for embedding

Sounds in your Projects.

Appendix 1

Getting started with the ADS1.2

Install the Metroweks CodeWarrior for ARM Developer Sutt.2
Copy the sketch which you plan to work with ol C:

For instance, it will be SSTEPMOTOR

Go to QASTEPMOTORtepMot.mcp and launch it

,2dQft 4SS Gddrapds Ay Of dzZRSR Ay

First time files may be marked with @8 aA 3y + 4 GKS € STaG aa
needed to be compiled.

puls
w»
©
[
[extN
_<
w»

N
<
w»
(@]}
D/
N
<
(Vo))
<
puj
puj
N
[
[
02}
Z

Right! t AO1 2y (GKS FAtSYlYSa

File Edit View Search Project Debug Window Help

sl <halANEdh s HEBR

HE]
[s ey @y >

' Files IL\nk Elrderl Targetsl

% | File | Code | Data 4 =
M Manc 34B0 1B22 + =~
B fone 0 150K « =
| B Fontc 0 30720 « =
L]
+ =

832 a
Open in Windows Explorer 36 1]

Check Syntax |

Preprocess

‘ | Compile
Compile If Dirty

Disassemble

Add Files...
Create Group...

Deletg ® 181K

Next, double click with the Left mouse key on the file you want to edit. For example, main.c
Rote@ 2 dzNJ Y2YAU2NI Ay GKS t 2NINFAG LRAAGAZ2Y AF Al

Change the screen colors as you prefer.

File Edit View Search Project Debug Window Help

I R LA EEEFEAY EEE A K2 WY BN

g Main.c
b+ {} + M~ B~ o~ Path | CASTEPMOTORMSRCWMain.c

sin_cos(u); [, dy contains cos sin

whe([ch* 52 =28 +u;
yh=-[[dy* a2 == 84y

it Cxhbl=xhOld || yhl=yhOld)

{
Put_Bmp(xbCid-4, vhOld-4, point_shadow);
Put_Bmpixb-4, vb-4, point);
xhOld=xchy; yhOld=yh;

¥

percentage = freg_curis;

o ——

_— IDE Preferences

rﬂ IDE Preference Panels E Text Colars
[= General

- Build Settings Test Colors

- |DE Extraz Foreground: - B ackground: I

~ Plugin Settingz
- Shiglded Folders el Activate Syntax Coloring

- Source Trees Comments: [N kepwvards: [Strings:

- Editor
- Editor Settings r Custom Keywords

- Fant& Tabs Set1: [N _Eon. | set 3 [ot
- Test Colors set2 | o | set [i

- Debugger
— ¥ Activate Browser Coloning

- Dizplay Settings
- Wfindowing
-~ Global Settings Classes: Furctions: Templates:

. L |
Congtants: - Globals: - Typedefs:
. -

Enums: M acros: Other:

Factory Settings | Revert Import Panel... | Export Panel...

ok | Cancel | Apply |

T 10=0 &5 J==30] = == _COS[3], T _COs[I0-5], gots o, 7
it (90w && u==1800 {a=u-90, dx=-sin_cos[a]; chy=gin_cos[90-a] goto ow; }
it (180=u && us=213) {a=u-180; dy=-sin_cos[a]; ohx=-zin_cos{90-a]; H

Select your favorite font (1 use Arial size 8 because | think that fonts such as Courier have additional
elements which can overload you visual sessand the brain).

File Edit View Search Project Debug Window Help

fTasEvex<xhad AR sEER

Main.c
b~ {} v M~ [~ o'~ Path | CASTEPMOTOR\SRC\Main.c

sin_cos(u); I, oy contains cos sin

sh=((c 2 == 804w,
yh=-[[dy*S2==8)+y e,

it (xbl=xbold || yhl=ybOld)

i
Put_Bmpi(xhCid-4, yhOld-4, poirt_shadaw);
Put_Bmp(xh-4, vih-4, point);
xbZid=xh; yhOld=vk;

h

percentage = freg_curls;

R IDE Preference Panels j Font & Tabs
= General =l el
- Build Settings (s S
. DE Extras Fornt:|ial | Size:ls vl
-+ Plugin Settings .
Script: ¥
- Shislded Folders cipt { 3anacri =
- Source Trees — Sample
= Editor | program therefore | am.
- Editor Settings
- Font & T absz
o Tewt Colors 5 =
= Debugger — Document tab settings
- Display Settings v Auto Indent Tab Size: |4
- Windowing

- Global Seffings — Global tab settings

¥ Tabindents selection [~ Tablnserts Spaces
]
Factony Settings Rewert Impart Panel... | Ewport Panel... |
k. | Cancel | Apply |
T =0 &8 == - 7= _ o= A], e == Cos[d0-5], o ol g
it (90=u && u==180) {z=u-90; dx=-sin_cosz[a]; dy=gin_cos[90-a], goto ou;}
it (180=u && u==215) {a=u-180; dy=-sin_cos[a], dx=-zin_cos[90-5]; H
au; o
b
LI I G U
wioid print_String{LME w0, LM E =0, char *:d) Nt - pointer on char
{ WME=yszH

LHME ¢
LG we=10; i svicth
LM E t=16; Jf heght

In the Control PanetScreer> ClearType try to unselect this option. The text on your screen must
0502YS aKIFNL) g6A0K y2 dag22f¢é 02NRSNRBO

Change the name of Binary file as you like:

File Edit View Search Project Debug Window Help

I R B BB AY EEEARILI EY BER-

| PSound.mep [=[=@ =]
IlﬂBinar}' jl@”@gh

Files | Link Order Targets |

Targets

¥ Binard

HE]

Ii Target Settingz Panels ﬂ ARM fromELF
= Target =
-+ Target Settings — Options — Text format flags

- Arccess Paths ¥ |nciude debug sections in autput [T Werbose
; Bu'ld_EHhaS) ¥ Disassemble cods
-+ Runtime Settings

- File Mappings ~ Dutput format ™ Frint contents of data section

- Source Trees [Frint debug tables
- ARM Target Flain binary =]
- Language Settingz _
. AR Aszsembler . I Prirt symbol table

- BRM C Compiler [Prirk tring table

i P'S ound.bi Ch |
?EM ET;ECDmPIIIEI _ Funean o ™ Frint object sizes
~ Thurnb C Compiler

« Thumb C++ Campiler E quivalent Command Line
= Linker - -output PSound. bin -bin
> ARM Linker
i ARM fromELF
= Editor j

™ Frint relocation information

Factory Settings Rewvert Impart Panel. .. | Export Panel. . |

| Cancel | Apply |

Last, press [F7] to compile your project

