
 

 

 

 

STARTOS 

 

Userôs Manual 

 

 

 

 

 

 

 

Jan 17, 2013 

 
 
 
 
É Anatoly Besplemennov 

  



 

 
 
 
 
 

Introduction 
 

The system may be ported and adapted on any ARM platform. To begin letôs consider 

the ARM9 developing board is used. 

The Friendly ARM device ñmini2440ò attracts attention by itôsô possibilities and low cost. 

Mini2440 is useful for developing industrial automation systems. 

Many specialists try to carry the properties of mainframe computers to the Friendly ARM. 

But there is also another approach, from simple to complex i.e. from rapidly developing MCUs. 

Computer market offers desktop computers, notebooks, Net books, tablets. At the 

present time in industrial automation field the mini2440 board has fewer number of competitors, 

taking in consideration the set of external devices mounted aboard, jacks for their connection 

and wide range of LCD screens. 

Many users successfully working with traditional computers and microcontrollers meet 

difficulties developing and applying ARM systems. 

All that impelled the author to create not complex system for industrial automation, 

laboratory purposes and as an instrumental aid for scientific experiments. STARTOS was 

created by engineer and for engineers. 

A system aimed to contain functions, which we like to use: simplicity, reliability, 

launching programs from external drives, providing the user with the system functions through 

the mechanism of program interrupts. The system does not limit the user possibilities but gives 

him the services. It executes all duty work allowing the user to think about his main task. 

It was built to be clear, easy to use, quick for learning and applying by engineers, 
students and specialists in other non-programming fields. 

 
 
 
 

 
 
 

  



 
 

Quick start 
 

 

In order to prompt verifying system abilities, not in details, itôs necessary to do the 

following: 

 - Please load S_X35.BIN (or other matching to your hardware) into SDRAM or in NAND 

Flash by using standard methods (commands [d] or [a]).  Launch the DNW program, connect 

COM and USB cables to the Board, select your PCôs COM Port number and set load address 

0x33D00000 (0x30000000 also will be good). 

First time System will ask to calibrate the touch-sensitive screen. 

On your Desktop/Notebook computer: 

 

- Perform quick format SD card up to 2 GB for FAT32, 

- Write some files from folder BIN into the Card`s root and insert it in Friendly ARM. 

In case you have loaded STARTOS by [a] command, move the switch S2 in NAND 

position. Turn the power on. During 1 second the window with the programôs graphic interface 

will appear. 

 Press [ > ] in the left lower corner of the screen. List of files from SD card will appear. 

 

Next, click on the file name with the stylus, for example, tap Hello1.BIN. It must begin to 

work. 

 

 

 

 

 

 

  



 

System properties 
 

       The system is written using C and Assembler languages. Actually it is the kernel with the 

User interface and minimal set of necessary functions. That is why it had no beautiful 

appearance with clock and calendar. (This may be done by making file Start.bin - it will be 

playing the Shell's role. For industrial purposes itôs not needed). 

Start time after power on:       less than 1 s 

Size of program:                less than 40 KBytes 

SDRAM loading address:       0x33D00000. 

System occupies a small volume in the upper SDRAM area providing the userôs standard 

programs loading from address 0x30000000 (very beginning of the RAM) and memory volume 

of 0x33D00000-0x30000000= 63963136 Bytes (almost all 64 MB). 

Autorun the Userôs programs after power on   present 

If the file named START.BIN is present on the SD card, it will be launched automatically. 

 

 The user is granted to have full control over hardware resources. 

System functions 

- Initialization the SoC (system on chip) Samsung S3C2440A components and other external 

devices; 

- User programs loading and interworking with system functions; 

- Working with the LCD in text and graphic modes ( output Text, Pixels, Lines, Boxes, BMP 

pictures, Saving / Restoring Screen areas ); 

- Reading pen X, Y coordinates of the touch screen; 

- Working with the RTC (real time clock); 

- Reading data from analog to digital converters (ADC); 

- Reading / Writing Data to / from digital ports; 

- Reading / Writing Bytes and Strings of the COM Port; 

- Working with pulse-width modulators (PWM) and Piezo buzzer, Sound output 8 bits per 

sample 16KHz sample rate is supported as well; 

- Networking (Receive/Transmit Ethernet packets, TCP IP Web Client/Server); 

- Reading/writing files from/to the SD card. 



Screen calibration data are stored in EEPROM. 

 Work with SD cards is very useful for embedded systems for changing and upgrading 

programs.  It also preserves the NAND Flash memory with limited write cycles and soldered into 

the system board. 

System was tested and verified on standard (not SDHC) cards up to 2 GB with the file 

system FAT32. Use better the Micro SD, you will save SD slot on Friendly ARM board in case of 

intensive work. Cardôs data transfer speed determines the loading time. If card will be too slow, 

the timeout will be occurring and the system will produce error message: No/Slow SD. 

 

 The system is using the Interrupts Driven model. The user must avoid implementing 

systemôs software interrupts in Interrupt Service Routines (ISR). The ISRs must be short and 

work with Hardware resources only and set Flags for Main Program. However, it can be 

changed. Doing this, the System must understand from which Processor Mode it came into the 

Interrupt and set the Processor Mode in proper status. It may be done automatically. 

 Also, the system can be forced to execute Data arrays as instructions. It is useful for 

experimenting with Evolutionary Algorithms (Genetic Algorithms in particular), for creating the 

self-modified Program Code. 

 

Limitations 

 

Author didnôt plan to spend much time developing additional functions, possibly not 

popular among users and increasing the systemôs code. That is why: 

 

       - Screen keyboard is not present on the system level. User can make his own keyboard as 

considered in the Project ñKeybò in Sketches supplied. 

       - There are two system fonts. Both of them have matrix size 8x8 pixels. One font is normal, 

other - bold. It is possible to create any other font. Project Hello2 gives an example how to 

create and print with the User font as graphics. The Hello3 sketch shows how to build and 

modify the Userôs fonts (8x16 and so on). The Font32 Project shows how to create and apply 

the font 32x32 pixels in size from the Times New Roman Windows font. In the Web Client 

Project the font 4x6 pixels is used for printing the Web Page in HTML form. 

  



 

Programmerôs interface  

Function description 
 

 The system is on developing with adding new functions.  

 

Exit (void); 

Exit  the user's program. 
 

Delay (int ms); Delay_uS(int uS); 

Delays execution of the program. Parameters : number of milliseconds or uSeconds 
 
 

Screen operations 
 

Fill_Screen (int color); 

Fill screen by the color. Parameter:  color (depth 16 bits per pixel) 
 
 

Text 

Set_Font (char Bold, int Fore_Col, int Back_Col); 

Changes the current font. Parameters: 1st: 1-bold, 0- normal; 2nd: color of symbols, 3rd: 
color of the background, (if  equal 1, background will be transparent). 
 

 

Print_String (int x0, int y0, char *txt); 

Outputs the String of text to the LCD. Parameters: 1st and 2nd - abscissa and ordinate 

of the line beginning position in pixels, 3rd: pointer to text buffer or the line itself in quotation-

marks. 

Examples: 

char txt [ 5 ] = { "Hello" }; // or  char *txt=òHelloò 

Print_String ( 30,  50,  txt ); 

Print_String ( 30, 70,  "Hello, World!" ); 

The text is printed by previously defined font. 
 

 

Printf  (int x, int y, char *fmt,...); 



Prints out the line of formatted text 

Examples: 

z=0xCDEF12;  

Printf (80, 170, "Z=0x%x", z); 

 

Graphics 

 

Set_Color (int Color); 

Establishes a current color for functions Put_Pixel, Line and painted rectangle (Box). 
 

Put_Bmp (int x0, int y0, char *bmp ); 

Put out bitmap image on the LCD with the coordinates of the left upper corner x0 and y0. 

3rd parameter points onto the image buffer with type ñcharò. First 4 bytes in the buffer must 

represent: first pair - width of the image, second pair - height. 

 

Example: 

char run [ ]  =  //  w = 0032, h = 0006 

{ 32, 0, 6, 0,  0xff, 0xf0, 0xff, 0xf0, 0xff, 0xf0, 0x00, 0x00, 0x54, 0x14, 0xff, 0xf0,0x00, 

0x00, 0x54, 0x14, 0xff, 0xf0, 0x00, 0x00, 0xféé..} 

Put_Bmp ( 198, 139, run ); 

Draws image with = 32 and height = 6 pixels in the screen area with the coordinates of 

upper left corner x=198, y=139. Pixels of images are described in user char array run [ ]. 

 

Put_Pixel (int x, int y, int color); 

Puts one dot pixel on the LCD with coordinates ñxò and ñyò and color ñcolorò. 
 

 

Get_Pixel (int x, int y); 

The function returns color value of the screen point with coordinates x and y in user 

variable, for example: 

int pix_color; 

pix_color = Get_Pixel (60, 80); 

 



 

Put_Line  (int x0, int y0, int x1, int y1 ); 

Draws the line on the LCD which begins at x0 and y0 and ends at x1 and y1 coordinates. 
Color is determined by last operator Set_Color. 
 

 

 

Save_Box  (int x0, int y0, int w, int h); 

Stores rectangular area of the screen with coordinates of left upper corner x0 and y0, 
width w and height h in systemôs inner buffer. 

 

 

Restore_Box  (int x0, int y0 ); 

Restores the rectangular area onto the screen with the coordinates of the left upper 
corner x0 and y0, with width w and height h which was stored in the systemôs inner buffer. 
 

 

 

Box  (int x0, int y0, int x1, int y1 ); 

Draws rectangle on screen with coordinates x0, y0, x1, y1. The color of rectangle 
monotonously subsides from value given by last operator Set_Color from top to bottom. May be 
useful for drawing buttons, bars, etc. 
 

 

 

LCD Control  
 

LCD_LEDs ( char invpwren, char pwren ); 

Turn On or Off the screen backlight LEDs and the Video output. Use in various 

combinations. 

The first parameter controls the inverting of LCD_Video signal for auto turning On 

backlight in case of Video appearance. 

Second operator Turns On / Off backlight LEDs. 

Examples: 

LCD_LEDs ( 0, 1 );  - LEDs On - the Screen is visible 

LCD_LEDs ( 0, 0 );  - LEDs Off - the Screen is invisible 

 



LCD_Video ( char on_off ); 

Turns On / Off video signal 

Example. 

LCD_Video ( 1 ); - video turned On 
 

 

Touch Screen 

int Get_TSBuffer ( ); 

Returns the address of system touch screen buffer in user variable. It is the quickest 

method of getting  x and y. The buffer contains: [0] ï Flag of the pen was tapped, [1] ï X ïcord. 

[2] ï Y-cord. 

Example: 

int  z, x, y; 

int *Pen_Buffer_Address; 

z = Get_TSBuffer( );    //  Receive the buffer address in z  

Pen_Buffer_Address = (int *) z; //  Set pointer to the bufferôs address  

Next we can verify the state of touch screen and get coordinates of the screen point 

where the pen was tapped. 

if ( Pen_Buffer_Address [ 0 ] )   //  was pressed ? 

{ Pen_Buffer_Address [ 0 ] = 0;  //  clear the flag of pressing  

x = Pen_Buffer_Address [ 1 ];  

 y = Pen_Buffer_Address [ 2 ];  // read coordinates x and y 

} 

 

int Read_TS(&(x),&(y)); 

 Read_TS () will fill X,Y with their values. Also it returns the Flag showing if the screen is 

pressed or not. 

Example: 

int pen_down; 

int x,y; 

 pen_down=Read_TS(&(x),&(y)); 

 



 if (pen_down) 

 { if ( ((y>30)&&(y<60)) && ((x>30)&&(x<60)) ){ Exit(); }  // exit 

  else 

  { Printf( 50, 200, "X = %03d", x); Printf( 50, 210, "Y = %03d", y); } 

 } 

 

Real Time Clock (RTC) 

Get_RTC (char *txt); 

The function fills the txt char array by date and time in format: dd.mm.yy hh:mm.ss Then 

the user program can change the order of digits if needed and use itsô values. 

 

Timer 

 Get_ms ( ); 

 Returns number of milliseconds have passed since the last system start. The Timer4 is 

initialized and used as the system timer. Also it may be used for switching between tasks. 

Example. 

ms=Get_ms(); 

SD card 
 

int  Read_SD ( char *RAM_address, U32 SD_address, U16 block); 
 

int  Write_SD ( char *RAM_address, U32 SD_address, U16 block);  
 
 Direct reads/writes areas on the SD card. 
 Input: pointer to the buffer or physical address in RAM, SD card address, number of 
blocks. One block equal 512 Bytes. Useful for custom file systems or fast transfer. 
 

 
Files 

 
int  Open_File (char *fname); 
 
Opens the file with specified file name. Returns the length or 0 if file not exists. 
 

  F_Len = Open_File( snd_tst ); 

  



 
 

int  Read_File(char *f_buf, int len); 
 

Reads len number of Bytes from the open file into the buffer or address. 

Example. 

int  F_Len; 

char  SND_Buffer [100000];  // Snd File_Buffer 

char  PIC_Buffer [260000];  // Pic File_Buffer 

char  snd_tst[11] = {'S','O','U','N','D','T','S','T','D','A','T'}; 

. . . . . . 

 F_Len = Open_File( snd_tst ); 

 Printf (0,50,"Sound File Len =  %04d", F_Len );   

 Read_File (SND_Buffer, F_Len); 

 PSound ( SND_Buffer, F_Len ); 

 

int  Write_File (char *f_buf, int len); 
 

Example. 

char  txt1_tst[11] = {'T','E','X','T', '_', 'I', 'N',' ','T','X','T'}; // put spaces when no letters 

char  txt2_tst[11] = {'T','E','X','T','_','O','U','T','T','X','T'}; 

  F_Len = Open_File( txt2_tst );  // open file for writing 

  Write_File ( W_Buff, F_Len );  // write the data 

Notes: 

1. File for writing must be previously created on your PC and have sufficient size 

2. The buffer for fileôs data must be big enough to accept the data. It must be aligned by 

the cluster size. For instance, you plan to write the BMP file for 240x320 and 24 bpp. It has size 

230454 Bytes including the Head. So, the buffer will be at least 245760 Bytes. The number 

245760 = 15 clusters x 16384 Bytes in one cluster. 16384 is the max cluster size for FAT32. 

You may choose from 512 to 16384 while formatting the card. More the cluster size, more the 

speed. 

Simple method: just look at the fileôs size on your PC and add some value. 

  



 

Analog To Digital Donverter (ADC) 
 

Get_ADC (char ADC_chan); 

Returns measured voltage applied to the input pins of ADC (channels 0é3) into user 

variable. 

Example: 

int ADC_data; 

 ADC_data = Get_ADC( 0 ); 

 Set_Font ( 1, Yellow, 20); 

 Printf ( 50, 70, "ADC Channel 0 = %03d", ADC_data ); 

 

 

Pulse width modulator (PWM) and Piezo Buzzer 

 

 PWM_out0 (U8 val); // this is the PIN31 at CON4 
PWM_out1 (U8 val);  // this is the PIN32 at CON4 

Outputs the pulse width modulated signal on corresponding pins. Val must be in 0é255 

limits. Useful for analog output and the servo motor control. 

 

Buzz  (int freq, int ms); 

Connects the on board Piezo buzzer to the first PWM channel output and the Buzzer 
produces sound with frequency freq and duration ms. 

 

Buzzer_Freq (int freq); 

Defines the frequency produced by PWM in Hertz. 
 

Buzzer_Out (char on_off); 

Connects (if parameter=1) or disconnects (if parameter=0) PWM Out from Piezo Buzzer. 
So it will produce sound or keep silence. 

 

 
Sounds using PWM, Pezospeaker or Amplifier with Loudspeaker 

 
 
void PSound (U8 *buf, int len ); 



 Plays Sound Data from buffer buf with length len. 

 The function uses the PWM Timer0 in Interrupts Mode. Immediately returns control to 

the User program while keeping the sound playing. 

Example: 

PSound ( sound1,  5946 ); 

PSound ( sound1+offset,  5946-offset ); // Plays not from the beginning 

Sound Data is prepared by Utility supplied. It must be 8-bits per sample, 16 kHz sample 

rate. 

An example you can see at: http://youtu.be/Qdtj17tCpfM 

Output Device is connected to GND (Pin 3) and GPB0 (Timer0 PWM, Pin 31) of CON4. 

Otherwise you will hear sounds, produced by on board Piezospeaker. 

Do append sequence é128,100,80,60,40,20 at the End of Sound array to avoid ñclickò if 

needed. 

  

http://youtu.be/Qdtj17tCpfM


 

Universal asynchronous receiver-transmitter 
( UART, COM Port ) 

 

 

Uart_Init (char chan, int BaudRate); 

Initializes UART and assigns Data exchange speed. 

 

Example: Uart_Init ( 0 , 115200 );  - sets channel 0 and speed 115 KBod 

 

Uart_Select (char chan); 

Select one of three UART channels  

 

 

Uart_Printf ( char *fmt, ... ); 

Sends a line of formatted text into a COM port. 
 

 

 

Uart_TxEmpty (char chan); 

Flushes the UART shift register data in the channel pointed. (Clears it and prepare to 

work). 

 

char Uart_GetChar (char chan);  

Gets UART data byte, stores it in User variable with waiting for the data's appearance. 
 

 

char Uart_GetKey (char chan);  

Gets UART data byte, moves it in User variable without waiting of data get ready. 
 

If the data in register exist, they will be read, if no, program continues its execution. 
 

 

 



Uart_GetString (char *string); 

Inputs line of symbols from the port until buffer of the line will ends or will be accepted 
symbol \r (<lf>+<cr>, key [Enter]). 
 

 

 

Uart_SendByte (char data); 

Sends a byte of data into a COM port. 
 

 

Uart_SendString (char *pt); 

Sends a line of symbols into COM port. Parameter ï pointer to line or line by itself closed 
in quotation-marks. 

 

 

Miscellaneous functions 
 

 

 Dec2Asc (int num, char *txt); 

Translates decimal number num into char type and places it in txt array. 

 

Hex2Asc (int num, char *txt); 

Translates hexadecimal number num into char type and writes it into the txt array. 
 
 

 

Network functions 
 
 

  

Network interface controller initialization 

 
char NIC_init (char *MAC_addr);  

 

res = NIC_Init ( macaddr ); 

Initialize the NIC with the MAC address. 

Returns error codes or the connection parameters (the speed, half/full duplex). 



 

Packet receive 

int NIC_rx (U16 *RX_buffer); 

 

rx_len = NIC_rx( RX_data) ); 

Reads the Ethernet packet into the buffer, returns the length of the packet or zero. 

 

Transmit packet 

 

void NIC_tx (U16 *TX_buffer, U16 Nbytes); 

NIC_tx ( TX_data, 70 ); 

Send the packet from buffer with length in Bytes. 

 

 

The Web Server 

 

Server ( 80, mini2440_ip, page1,  strbuf ); 

Input: the Port number, the source IP address, the buffer with Page. 

Returns the String (up to 10 Bytes) which contains arguments got from the Browser to 

perform  analyze and processing. 

 

The Client 

 

res = Client (  mini2440_ip, server_ip, request, buf ); 

Input: the source, destination IP addresses, request to Server. 

Output: the pointer to buffer containing the Page received from the Server and 

res=number of Bytes received. 

 

More detailed Networking description see in Appendix 2. 



 

 

 

Program examples 
 

Projects were prepared in Metrowerks CodeWarrior for ARM Developer Suite v1.2. It is 

assumed, that environment is installed on your computer. Also some projects were ported in 

Keil uVision4 IDE and IAR. 

There are enough only three files for a project: 
 

- start.s   - system Initialization; 

- StartOS.c   - description and system functions; 

- Main.c   - your program itself 

 
 



 

 

Size of executing binary module also depends from option ñOne ELF section per 

functionò. If it is checked, program size, for example, Hello1.bin decreases from 776 to 180 

bytes. More complex programs in this case may not work, then simply cancel (uncheck) the 

option. 

 



 

 

 

You can also use standard init files from ADS,  Keil  or IAR. 

 

 

  For work with examples is necessary to do: 
 

 - Find and launch the file of project with .mcp extension, for example, Hello1.mʩʨ. 
 



 

 

 

 Edit file Main.ʩ on your consideration, taste and style. Also you can edit the names of the 

system calls in the file StartOS.ʩ as you wish. 

For build project Press [F7]. 

In folder C:\sketches\HELLO1\Hello1_Data\DebugRel_bin will appear file Hello1.bin. 

Write Hello1.bin in root of SD card. Insert card in Friendly ARM, turn power on. 

During 1 second will appear the system screen.  

Press [ > ] in the left lower corner of the screen. 

List of files on SD then will appear. 

Tap Hello1.bin by Stylus.  

The program must begin to work. 

 

 Next you can experiment with other programs. 

 In case of any questions, please contact author. 

 



All educational projects were verified on operability. They can be used as base for 

building your programs. Simply Edit text of Main.ʩ, translate and get ready programs. 

 Folder Pictures contains primitives for examples STEPMOTOR and HELLO2. 

  In folder BMP2C you will find programs for converting BMP files onto source text in C 

language. This utility is from DVD supplied with Friendly ARM. 

 

 The GLCD FontCreator and Evafont utilities let you make your own font. 

 The WaveEditor, AudioConverter, Converter WAV to C source are used for embedding 

Sounds in your Projects. 

 

 
 

  



Appendix 1 

Getting started with the ADS1.2 

 

Install the Metrowerks CodeWarrior for ARM Developer Suit  v1.2 

Copy the sketch which you plan to work with on C:\  

For instance, it will be C:\STEPMOTOR 

Go to C:\STEPMOTOR\StepMot.mcp and launch it 

¸ƻǳΩƭƭ ǎŜŜ CƛƭŜǎΣ ƛƴŎƭǳŘŜŘ ƛƴ the project 

First time files may be marked with ώǾϐ ǎƛƎƴ ŀǘ ǘƘŜ ƭŜŦǘ ǎƛŘŜΦ Lǘ ƳŜŀƴǎ ǘƘŀǘ ǘƘŜȅ ǿŜǊŜ άǘƻǳŎƘŜŘέ ŀƴŘ ŀǊŜ 
needed to be compiled. 

Right-/ƭƛŎƪ ƻƴ ǘƘŜ ŦƛƭŜƴŀƳŜǎ ƻƴŜ ōȅ ƻƴŜ ŀƴŘ Řƻ ǇŜǊŦƻǊƳ ά/ƻƳǇƛƭŜέ 

 



Next, double click with the Left mouse key on the file you want to edit. For example, main.c 

Rotate ȅƻǳǊ ƳƻƴƛǘƻǊ ƛƴ ǘƘŜ tƻǊǘǊŀƛǘ Ǉƻǎƛǘƛƻƴ ƛŦ ƛǘΩǎ ǇƻǎǎƛōƭŜΦ 

Change the screen colors as you prefer. 

 

 

 

  



 

Select your favorite font (I use Arial size 8 because I think that fonts such as Courier have additional 

elements which can overload you visual sensors and the brain). 

 

 

 

In the Control Panel->Screen-> ClearType try to unselect this option. The text on your screen must 

ōŜŎƻƳŜ ǎƘŀǊǇ ǿƛǘƘ ƴƻ άǿƻƻƭέ ōƻǊŘŜǊǎΦ 



Change the name of Binary file as you like: 

 

 

 

 

 

 

 



Last, press [F7] to compile your project 

 


